Sunday, 7 December 2014

Type II Hypersensitivity Cytotoxic

In type II hypersensitivity (or cytotoxic hypersensitivity) the antibodies produced by the immune response bind to antigens on the patient's own cell surfaces. The antigens recognized in this way may either be intrinsic ("self" antigen, innately part of the patient's cells) or extrinsic (adsorbed onto the cells during exposure to some foreign antigen, possibly as part of infection with a pathogen). These cells are recognized by macrophages or dendritic cells, which act as antigen-presenting cells. This causes a B cell response, wherein antibodies are produced against the foreign antigen.

An example of type II hypersensitivity is the reaction to penicillin wherein the drug can bind to red blood cells, causing them to be recognized as different; B cell proliferation will take place and antibodies to the drug are produced. IgG and IgM antibodies bind to these antigens to form complexes that activate the classical pathway of complement activation to eliminate cells presenting foreign antigens (which are usually, but not in this case, pathogens). That is, mediators of acute inflammation are generated at the site and membrane attack complexes cause cell lysis and death. The reaction takes hours to a day.

Type II reactions can affect healthy cells. Examples include Red blood cells in Haemolytic Anaemia, Acetylcholine receptors in Myasthenia Gravis, and TSH receptors in Grave's Disease.

Another example of type II hypersensitivity reaction is Goodpasture's syndrome where the basement membrane(containing collagen type IV) in the lung and kidney is attacked by one's own antibodies.

Another form of type II hypersensitivity is called antibody-dependent cell-mediated cytotoxicity (ADCC). Here, cells exhibiting the foreign antigen are tagged with antibodies (IgG or IgM). These tagged cells are then recognised by natural killer cells (NK) and macrophages (recognised via IgG bound (via the Fc region) to the effector cell surface receptor, CD16 (FcγRIII)), which in turn kill these tagged cells.



No comments:

Post a Comment