Saturday, 13 December 2014

The Cardiac Cycle


The cardiac cycle refers to a complete heartbeat from its generation to the beginning of the next beat, and so includes the diastole, the systole and the intervening pause. The frequency of the cardiac cycle is described by the heart rate, which is typically expressed as beats per minute. Each beat of the heart involves five major stages. The first two stages, often considered together as the "ventricular filling" stage, involve the movement of blood from the atria into the ventricles. The next three stages involve the movement of blood from the ventricles to the pulmonary artery (in the case of the right ventricle) and the aorta (in the case of the left ventricle).
The first stage, "early diastole," is when the semilunar valves (the pulmonary valve and the aortic valve) close, the atrioventricular (AV) valves (the mitral valve and the tricuspid valve) open, and the whole heart is relaxed. The second stage, "atrial systole," is when the atrium contracts, and blood flows from atrium to the ventricle. The third stage, "isovolumic contraction" is when the ventricles begin to contract, the AV and semilunar valves close, and there is no change in volume. The fourth stage, "ventricular ejection," is when the ventricles are contracting and emptying, and the semilunar valves are open. During the fifth stage, "isovolumic relaxation time", pressure decreases, no blood enters the ventricles, the ventricles stop contracting and begin to relax, and the semilunar valves close due to the pressure of blood in the aorta.

Throughout the cardiac cycle, blood pressure increases and decreases. The cardiac cycle is coordinated by a series of electrical impulses that are produced by specialised pacemaker cells found within the sinoatrial node and the atrioventricular node. The cardiac muscle is composed of myocytes which initiate their own contraction without the help of external nerves (with the exception of modifying the heart rate due to metabolic demand). Under normal circumstances, each cycle takes 2.8 seconds

No comments:

Post a Comment